
Digital Object Identifier (DOI) 10.1007/s100529900068
Eur. Phys. J. C 10, 293–298 (1999) THE EUROPEAN

PHYSICAL JOURNAL C
c© Springer-Verlag 1999

Real time radiative corrections to charged particle decay laws
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Abstract. The real time exponential decay laws for meta-stable charged particles are shown to require
radiative corrections. The methods employed are well known to be valid for radiatively correcting Breit-
Wigner line shapes. Radiative corrections contribute substantially to precision life time measurements of
muons and pions when initially stopped in condensed matter.

1 Introduction

It is well known[1] that the exponential decay law[2] for
the survival probability P0(t) of a meta-stable particle,

P0(t) ≈ exp(−Γt), (1)

arises from an energy distribution[3] which is nearly
Lorentzian in shape

dW0(E) ≈
( h̄Γ

2π

)( dE

(E − E0)2 + (h̄Γ/2)2
)

; (2)

i.e.

P0(t) =
∣∣∣
∫

e−iEt/h̄dW0(E)
∣∣∣2 (exponential decay). (3)

It is also very well known that when charged particles
are involved in a decay process, the Lorentzian energy
distribution dW0(E) of the meta-stable particle must be
radiatively corrected[4][5] [6] to a new energy distribution
dW (E). The new distribution has a much more “skewed”
line shape than that of a simple Lorentzian. It then follows
that the survival probability also has a radiative correction
in real time; i.e.

P (t) =
∣∣∣
∫

e−iEt/h̄dW (E)
∣∣∣2 (radiatively corrected). (4)

Our purpose is to discuss the real time consequences of
radiation in the decay of meta-stable charged particles.

Previous to this work, the notion that radiative cor-
rections have important implications[7] for observations
of quantum noise in α-decays and β-decays in heavy nu-
clei was theoretically developed[8] for real time counting
rates. Strong experimental evidence for quantum noise in
nuclear β-decay counting rates has been reported[9][10].

The time scales of quantum noise observations in nu-
clear physics are of the order of a few hours to a few days.

These long times are still much less than the nuclear life
times, which in turn are of the order of a few years. For
the application of radiative corrections to real time decay
laws in high energy physics, e.g. for the weak decay

π+ → µ+ + νµ, (5)

or the weak decay

µ+ → e+ + νe + ν̄µ, (6)

the available absolute measurement time scales are consid-
erably reduced. Thus, the methods of detecting real time
radiative corrections should be somewhat different from
those methods used for nuclear weak decays.

In Sect. 2, the radiatively corrected survival probabil-
ity P (t) will be calculated from the mean number of soft
photons dN(ω) radiated into the bandwidth dω. The prop-
erties of the resulting distribution are discussed in Sect. 3,
in terms of the time dependent transition rate for decay
γ(t), defined as

P (t) = exp
(

−
∫ t

0
γ(s)ds

)
. (7)

In Sect. 3 we illustrate the computation of the time de-
pendent transition rate for a simple two body decay of
a charged particle, e.g. (5). In Sect. 4 we discuss the soft
photon emission coupling strength as a function of pho-
ton frequency and the velocity of the produced charged
particle both for insulators and conductors. We discuss
the soft photon emission in both the Bremsstrahlung and
Cerenkov regimes. In Sect. 5, we find (for times short on
the scale of inverse soft photon frequencies) that there ex-
ists a “hot spot” in the decay rate; i.e. the decay rate per
unit time γ(t) has a sharp peak for short times. In the
long time limit, the decay rate settles down to Γ , which
determines the intrinsic life time. In the vacuum, as well
as in materials, the decay rates exhibit a long time inverse
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t asymptotic time dependence which may be described by

γ(t) = Γ +
(2β0

t

)
+ ... as t → ∞. (8)

In (8), the over all coupling strength β0 for the soft pho-
tons may be computed from the mean number of radiated
photons dN(ω) in a bandwidth dω; It is

β0 = lim
ω→0

ω
(dN(ω)

dω

)
. (9)

In the concluding Sect. 6, we discuss why the notion of
radiative corrections to real time decay measurements in
high energy physics is surely worthy of further experimen-
tal study.

2 Energy distributions
and survival probabilities

Let Ψ denote the internal wave function of an unstable
charged particle in the center of mass frame. The energy
distribution of the state is given by

dW (E) =
(
Ψ, δ(E − H)Ψ

)
dE. (10)

The survival amplitude for the state Ψ is given by

S(t) =
(
Ψ, e−iHt/h̄Ψ

)
, (11)

which is rigorously related to the energy distribution via

S(t) =
∫

e−iEt/h̄dW (E). (12)

The survival probability

P (t) = |S(t)|2 (13)

is thus given by (4). If, in a two body decay of a charged
particle, dP(ω) is the probability of emitting soft photon
radiation in the energy interval h̄dω, then the radiatively
corrected renormalization dW0(E) → dW (E) is computed
via the energy convolution

(dW (E)
dE

)
=

∫ (dW0(E − h̄ω)
dE

)
dP(ω). (14)

If, during the decay, there are a mean number n̄k of pho-
tons radiated into mode k with Poisson statistics, then

dP(ω)
dω

=
∑
{n}

{∏
k

( n̄nk

k e−n̄k

nk!

)}
δ
(
ω −

∑
k

nkωk

)
. (15)

Employing the generating function in the time domain∫ ∞

0
e−iωtdP(ω) = e−χ(t), (16)

implies the simplification

χ(t) =
∫ ∞

0

(
1 − e−iωt

)
dN(ω), (17)

where dN(ω) is the mean number of photons radiated into
a bandwidth dω; i.e. (15) and (16) imply (17) with

dN(ω) =
( ∑

k

n̄kδ(ω − ωk)
)
dω. (18)

Furthermore, (1),(3),(4),(14) and (16) imply

P (t) = exp
( − Γt − 2 <e χ(t)

)
. (19)

(17) and (19) for the radiatively corrected survival proba-
bility are the central results of this section. Equations (7),
(17) and (19) imply that the radiatively corrected transi-
tion rate per unit time γ(t) as a function of time is related
to the mean number of soft photons dN(ω) radiated into
a bandwidth dω via

γ(t) = Γ + 2
∫ ∞

0
ω sin(ωt)dN(ω). (20)

The asymptotic (8) follows from (9) and (20).

3 Computation of transition rates

In order to compute
(
dN(ω)/dω), and thereby γ(t), for the

decay of a charged particle stopped in matter, we employ
Schwinger’s photon propagator method[11]. For a charged
particle moving on a path C, the self action due to virtual
photons is given by

S =
e2

2c

∫
C

∫
C

Dµν(x − y)dxµdyν , (21)

where Dµν(x − y) is the photon propagator in the con-
densed matter[12] wherein the original charged particle
was stopped. Employing the k-space representation

Dµν(x − y) =
∫

Dµν(k)eik·(x−y)
( d4k

(2π)4
)
. (22)

with
Lµ(k) =

∫
C

eik·xdxµ, (23)

the action

S =
e2

2c

∫
Lµ(k)Dµν(k)Lν(k)∗

( d4k

(2π)4
)
. (24)

One may compute the mean number of radiated photons
using

N = 2=m
(
S/h̄

)
. (25)

With the fine structure constant

α =
( e2

h̄c

)
, (26)

we have

N = α

∫
=m

(
Lµ(k)Dµν(k)Lν(k)∗

)( d4k

(2π)4
)
. (27)



A. Widom et al.: Real time radiative corrections to charged particle decay laws 295

If vi represents the initial four velocity of a particle (before
a two body decay) and vf represents the final recoil four
velocity of the produced charged particle after decay, then
one easily obtains the usual expression[4] for L(k); i.e.

L(k) = i
{( vf

k · vf

)
−

( vi

k · vi

)}
. (28)

For the vacuum radiation distribution case

Dvac
µν (k) =

( 4πηµν

k2 − i0+

)
, (29)

so that (37), (38) and (39) imply the well known[4] vacuum
radiated photon distribution

d3Nvac(k) =
( αd3k

4π2|k|
){( vf

k · vf

)
−

( vi

k · vi

)}2
. (30)

In the vacuum rest frame of the charged particle (before
decay), we find the usual result, as in (18),

dN(ω) =
(∫

δ(ω − c|k|)d3Nvac(k)
)

dω = β
(dω

ω

)
. (31)

For example, if in the rest frame of the charged particle
(before decay), a single final state charge has velocity v,
then

β(v) =
(α

π

){( c

|v|
)

ln
(c + |v|

c − |v|
)

− 2
}

. (32)

Equations (20), (31) and (32) yield

γ(t) = Γ +
(2β(v)

t

)
, (vacuum decay). (33)

The radiative corrections for a charged particle decay,
when the particle has been stopped in condensed matter,
are somewhat more subtle.

4 Decay of particles stopped
in condensed matter

Condensed matter systems are often described (for com-
plex frequency ζ in the upper half =m(ζ) > 0 plane) by
a dielectric response function ε(ζ), or by a conductivity
response function σ(ζ). These are related by

ε(ζ) = 1 +
(4πiσ(ζ)

ζ

)
. (34)

The above description may be incorporated into the tem-
poral gauge photon propagator, ζ → (|ω| + i0+), writ-
ten[12] as

D(k, ω) =

( 4π

|k|2 − (ω/c)2ε(|ω| + i0+)

){
1 −

( c2kk
ω2ε(|ω| + i0+)

)}
.

(35)

Fig. 1. Bremsstrahlung coupling strength as a function of ve-
locity for an insulator from (38) and (42)

Employing the temporal gauge (35) in the evaluation of
the number of radiated photons in (27) and (28) yields

β(ω,v) = ω
(dN(ω,v)

dω

)
, (36)

i.e.

β(ω,v) =
(ωα

πc

)
=m

∫ (v · D(k, ω + i0+)·v
(k · v − ω)2

)( d3k
(2π)3

)
.

(37)
The condensed matter version of the vacuum (32) is found
(after some tedious integration) to be

β(ω,v) =

<e
{( α

π
√

ε(ω + i0+)

)
F(

z(ω + i0+), z∗(ω + i0+)
)}

(38)

where
z(ζ) =

( c

v
√

ε(ζ)

)
, (39)

F(z, z∗) =
(G(z) − G(z∗)

z − z∗
)

(40)

and

G(z) =
(z2 − 1

2

)
ln

(z + 1
z − 1

)
− z. (41)

In the limit of real values for z

lim
y→0

F(x + iy) =
{

x ln
(x + 1

x − 1

)
− 2

}
, if |x| > 1. (42)

In a (somewhat unphysical) model where the dielectric
response ε is independent of frequency, there will be a
Bremsstrahlung regime for velocities obeying as shown in
the above Fig. 1;

|v| <
( c√

ε

)
Brehmsstrahlung. (43)

The value of the coupling strength in the insulating ma-
terial Bremsstrahlung regime is given by

β(v, ε) =
( α

πε

){( c

|v|
)

ln
(c +

√
ε|v|

c − √
ε|v|

)
− 2

}
. (44)
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Fig. 2. Coupling strength for a non-relativistic particle in a
conductor

In the high velocity regime there will be Cerenkov radia-
tion.

c > |v| >
( c√

ε

)
Cerenkov. (45)

However, the Cerenkov radiation regime can be discussed
carefully only in models where the full complex dielectric
response is taken into account. The dissipation in physical
continuous media implies a finite β(ω,v) in all regimes.

For example, in a model for an Ohm’s law conducting
material, the dielectric response function obeys

ε(ω) = 1 +
(4πiσ

ω

)
+ ... . (46)

For a non-relativistic particle the resulting coupling
strength β(ω,v) is plotted in Fig. 2.

One may look at high velocity (for some values of
(ω/σ)) to note the almost discontinuous jump from the
Bremsstrahlung regime to the Cerenkov regime in an
Ohm’s law metal. This is shown for (ω/σ) = 0.4 in Fig. 3.
For a high conductivity metal, σ ∼ 1018/sec. Thus, h̄σ ∼
1 KeV which establishes the order of magnitude of the
maximum frequency with which to define “soft photons”
in this Ohm’s law conducting model.

Finally, for a conductor in the low frequency limit

( 1√
ε

)
→ (

1 − i
)√( ω

8πσ

)
, as ω → 0, (47)

and

z → (
1 − i

)( c

v

)√( ω

8πσ

)
, as ω → 0. (48)

. From (38), (40), (41), (47) and (48) it follows that

β0(v) = lim
ω→0

β(ω,v) =
(α|v|

2c

)
, (conductor), (49)

independent of the conductivity σ.

Fig. 3. The almost discontinuous transition from the
Bremsstrahlung to the Cerenkov regimes in a conductor

Fig. 4. Transition rate “hot spots” for various cut-offs

5 Hot spots and long time tails

A typical model for the mean number of photons dN(ω)
in a bandwidth dω employs an exponential cut-off for high
frequency; it reads

dN(ω) = β0e
−ωτ

(dω

ω

)
. (50)

where (1/τ) is the frequency cut-off. From (20) and (50)
it follows that

γ(t) = Γ + 2β0

( t

t2 + τ2

)
(51)

may be used to compute the time dependent transition
rate in (7). If t >> τ , then the time dependence of γ(t) is
given by (8). Ultimately limt→∞ γ(t) = Γ , i.e. the intrinsic
decay rate. For very short times the intrinsic rate also
dominates; i.e. limt→0 γ(t) = Γ . However, for intermediate
times there exists a peak or “hot spot” in which the decay
rate may increase substantially. The situation is shown in
Fig. 4 which should hold true for both the vacuum decay
and for decays in an insulator. For the insulating case β0
is plotted in Fig. 1.

By plotting γ(t) in (7), one emphasizes the short time
deviations from the uniform in time transition rate Γ .
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Fig. 5. In a direct plot of ln P(t), the hot spot is not very
prominent

More conventionally[13][14], experimentalists directly plot
ln P (t). In such plots, the short time hot spot appears not
merely less pronounced, but in reality hardly visible. Thus,
it may have escaped some deserved attention.

From (7) and (51), it is found in simple Bremsstrah-
lung models that

P (t) =
( τ2

t2 + τ2

)β0

exp
( − Γt) (52)

To see what is involved, we plot the survival probabil-
ity P (t) in the above Fig. 5. The short time hot spot for
(Γτ)2 = 0.0001, which is so very obvious when plotted
as in Fig. 4, is not at all so obvious when plotted as in
Fig. 5. Both curves are mathematically equivalent in ac-
cordance with (7). To explore the short time hot spot on
an experimental level, one must examine the data in some
detail during the period of the first life time of the survival
probability, (say) at the early times 0 < t < (0.5/Γ ). For
precision life time measurements, one tries a much wider
time interval, (say) 0 < t < (10/Γ ). Such wide time inter-
vals may mask important material effects which may have
an effect on experimental precision. According to (52), the
exponential decay law exp(−Γt) has a materials depen-
dent prefactor

(
1 + (t/τ)2

)−β0 when explored over some
twenty life times.

Equation (52) holds true for both conductors and insu-
lators when the produced charged particle is in the Brems-
strahlung regime. The Cerenkov regime for insulators is a
bit more subtle. If one may define[15] for an insulator, a
Debye relaxation time τD, via

=m
(
ε(ω + i0+)

) → ε(ωτD), as ω → 0, (53)

then in the Cerenkov regime v > (c/
√

ε), and in the low
frequency limit ω → 0,

βC(ω, |v|) →
(αv

c

)( 1
ωτD

){
1 −

( c2

εv2

)}
. (54)

From (20) and (54) it follows that in the insulating
Cerenkov regime, the observed transition rate is renor-

malized to

γC = Γ +
(παv

cτD

){
1 −

( c2

εv2

)}
. (55)

Finally, the case of an insulator with a fractal low fre-
quency behavior[16] having exponent η,

=m
(
ε(ω + i0+)

) → ε
( ωτD

|ωτD|η
)
, as ω → 0, (56)

leads to

γC(t, η) = Γ + ϕ(η)
( αv

cτD

){
1 −

( c2

εv2

)}(τD

t

)η

, (57)

where

ϕ(η) = 2Γ (η) sin
(πη

2

)
, Γ (η) =

∫ ∞

0
xηe−x

(dx

x

)
. (58)

From (7) and (57) follows the Cerenkov fractal exponent
survival probability

PC(t) = exp
(

− Γt − ΦC(t, η, τD)
)
, (59)

where

ΦC(t, η, τD) =
( ϕ(η)αv

(1 − η)c

){
1 −

( c2

εv2

)}( t

τD

)(1−η)
, (60)

and which exhibits (for short times) a stretched exponen-
tial form. Note as η → 0, (60) becomes equivalent to (55).

6 Concluding remarks

The dielectric suppression of Bremsstrahlung in materials
is a well known experimental effect[17]. In this work, devi-
ations from the exponential laws in real time triggered by
soft photons have been studied for decaying charged par-
ticles in materials. Under the standard assumption of fac-
torizability of the “dynamical” energy distribution from
the soft photon emission spectrum as given in (14), we
have derived the transition rates for decays in insulating
and conducting materials, both in the Bremsstrahlung and
Cerenkov regimes. Several interesting results emerge some
of which are listed below.

If a particle decays in a conducting material, a novel
discontinuity is predicted to occur. We show in Fig. 3, that
as the velocity of the charged particle produced in the de-
cay increases from low values (bremsstrahlung region), the
radiative coupling strength (and hence the transition rate)
first decreases rapidly, shows a sharp discontinuity as it en-
ters the Cerenkov region and then continues to decrease
more slowly. Much care would be needed to experimen-
tally observe such a discontinuity since it is rather sharp
and hence confined to a very narrow velocity range of the
produced particle.

Another prediction concerns “hot spots” and long time
tails occurring both for the vacuum as well as an insula-
tor. As exhibited in Fig. 4, the transition rate has a well
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defined maximum (hot spot) for intermediate times and is
substantially different from its asymptotic value. On the
other hand, the same effect is shown in Fig. 5 to be com-
pletely washed out in a standard logarithmic plot of the
survival probability data commonly presented by experi-
mentalists. Thus, evidence, if any, for such an effect must
be sought out through a careful study of the transition
rate in the short time interval, say 0 < t < (0.5/Γ ).

The Cerenkov regime for insulators is also of particular
interest since it leads to decays of the “stretched exponen-
tial” form. The fractal exponent in the absorptive part of
the low frequency limit of the dielectric constant is shown
to be directly related to the radiative exponent in the real
time decay [see (56-60)]. It would be worthwhile to check
it experimentally.

In view of the above predicted deviations from purely
exponential decays, we urge that a concentrated, system-
atic and precise experimental study of the transition rate
be undertaken, both in the vacuum as well as in diverse
materials for different decay particle speeds. Exponen-
tial decays and Poisson statistics are almost axiomatic in
experimental particle physics. Thus, any deviations are
surely of fundamental interest.
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